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Abstract. On the basis of a local-field theory, the field in a quantum-well microcavity structure
is rigorously derived, and the expression for the optical absorption is given. Then, the optical
absorption in coupled double quantum wells(AlxGa1−xAs/GaAs) embedded in an asymmetric
microcavity is studied. The influences of different parameters of the quantum-well microcavity
and applied field strengths on the intersubband absorption are discussed.

1. Introduction

Recently the optical properties of quantum-well structures embedded in a microcavity have
attracted a lot of interest for both fundamental physics and application reasons [1–12], since
in such a structure the electrons and field are both confined in one direction, by the quantum
well and the cavity, respectively. This thus allows us to carry out a study of the light–matter
interaction in such a manner that by detuning the coupling between the quantum wells and
the modes of the optical field supported by the microcavity, one can effectively control
the light–quantum-well interaction [1, 2]. Different theoretical approaches have been used
to study the quantum-well microcavity systems [3–8]. Also, investigations of the second-
harmonic generation from a vertical cavity [9, 10] and bistability [11] in a microcavity have
been carried out. For a detailed review, the reader is referred to reference [12].

In the last decade, the local-field effects on optical properties of quantum-well structures
have been studied [13–19]. It has been demonstrated that, to obtain an accurate prediction
of the optical properties of normal quantum-well structures, it is necessary to include the
local-field effects [13]. In this paper we use a local-field theory to investigate the linear
optical absorption of coupled double quantum wells embedded in an asymmetric microcavity
under the influence of an external electric field.

This paper is organized as follows. In section 2, starting from the Maxwell–Lorentz
equations, the expression for the field in each layer is given, and the field in the quantum
wells is determined via an integral equation. Then, by matching the boundary conditions,
the field in the quantum-well microcavity structure is determined, and the field determined
is used to calculate the absorption. In section 3, on the basis of the theory developed in the
previous section, detailed numerical calculations for different parameters of the microcavity
and field strengths are performed, and the influences of the fineness of the microcavity and
the field strength on the intersubband absorption are shown.
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2. Theoretical framework

The basic structure under consideration is constructed from three layers (a/b/c) which are
characterized by their dielectric constants:

ε(z) =


εa z < 0, layer a

εb 0< z < L, layer b

εc z > L, layer c

(1)

and coupled double quantum wells are placed in layer b, which is located atL1; the well
widths ared1 andd2, respectively, and the width of the barrier isdb. In order to construct
the Fabry–Perot microcavity, two stacks of distributed Bragg reflecting layers (DBR) are
placed in front of and behind the basic cavity of lengthL. F is the applied electric field
(cf. figure 1).
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Figure 1. A schematic view of the quantum-well microcavity structure.αi is the amplitude of
the incident field before the first DBR;αa is the amplitude of the field in the layer just outside
the cavity (behind the first DBR);αb is the amplitude of the field incident on the quantum wells;
αc is the amplitude of the field just outside the cavity (behind the cavity);αf is the amplitude
of the transmitted field behind the second DBR.βj is the corresponding reflected field.F is the
applied field.

Since only a p-polarized incident field is applied, it is sufficient to consider thex- and
z-components of the field. Let us first consider the basic cavity structure, and cope with
the DBR later. According the Maxwell–Lorentz equations, the electric field in each layer
is determined by the wave equations, and the electric field has the following form:

Ej (z) = (αjeiq(j)⊥ z + βje−iq(j)⊥ z)ex − q‖
q
(j)

⊥
(αje

iq(j)⊥ z − βje−iq(j)⊥ z)ez in layer j = a or c

(2)

and due to the presence of the quantum well the field in layer b is modified by [14–16]

EB(z) = Eb(z)− iµ0ω

∫ ∫
G(z− z′)σ(z′, z′′)EB(z

′′) dz′′ dz′ (3)

where the background field,Eb(z), is the field with no quantum well embedded in the layer
b, which is given by equation (2).G(z−z′) is the appropriate propagator [13] andσ(z′, z′′)
is the linear conductivity tensor of the well. We assume that in the quantum well there are
only two confined states in the conduction band, which is a good approximation when the
incident photon energy is close to the energy separation considered, of which only the lower
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state is populated by electrons. In this case, as derived from the density-matrix approach,
the linear conductivity tensor takes a diagonal form [13].

The tensor forms of the propagator and the conductivity allow us to rewrite equation
(3) in matrix notation:

EB(z) = Eb(z)+Ξ(z)γ (4)

where

Ξ(z) =
[∫

G(z− z′)T(z′) dz′
]
ζ (5)

γ =
∫

T(z′′)EB(z
′′) dz′′. (6)

The explicit expressions forT(z′′) andζ are given in the appendix.
For the present, we focus on thez-component of the local field in the layer b, since

the x-component is slowly varying across the well [13]. By multiplying thez-part of the
local field (equation (4)) by8(z) and thereafter integrating the resultant equation, one
immediately realizes that the parametersγz are determined via

γz = − q‖
q
(b)
⊥

αb − βb
1− Szz

∫
8(z) dz (7)

where

Szz =
∫
8(z)4zz(z) dz ζzz

=
(
c0

ω

)2 1

εb

{∫
82(z) dz+ q2

‖
2iq⊥

[∫
8(z)

∫
eiq(b)⊥ |z−z′|8(z′) dz′ dz

]}
ζzz.

(8)

Before going further, we make the assumption that the DBR behind the basic cavity is
removed, since the light is totally reflected at the interface b/c, which will be considered
later; thusαc = αf andβc = 0. In order to determine the as-yet unknownαb andβb, one
has to match the boundary conditions, namely, the continuities ofEx(z) andDz(z) at the
interfaces,z = 0 andz = L. Thereafter, eliminatingαc andβa in favour ofαb andβb, then
insertingαb andβb into equation (7), one finally obtains

γz = κ

1+ 0 (9)

where

0 =
[(∫

8(z) dz q‖

)/
[(1+ rabrbce2iq(b)⊥ L)q

(b)
⊥ ]

]
×
[
rab(1+ rbce2iq(b)⊥ L)4xz(0)+ tabrbceiq(b)⊥ L4xz(L)

]
− Szz (10)

and

κ = −αatabq‖(1+ rbce
2iq(b)⊥ L)

(1+ rabrbce2iq(b)⊥ L)q
(b)
⊥

∫
8(z) dz (11)

where rab and rbc are the amplitude reflection coefficients at the interfaces a/b and b/c,
respectively, andtab = 1− rab.



3288 Xin Chen and Mufei Xiao

Having determined the local field in the quantum-well microcavity system, and
according to the definition of the Fresnel reflection coefficient (Rp), one has

Rp = −βa
αa
= rp − 1+ rab

1+ rabrbce2iq(b)⊥ L

[
4xz(0)− rbceiq(b)⊥ L4xz(L)

]
γz (12)

whererp is the reflection coefficient in the absence of the well, which is also given in the
appendix.

In the absence of the quantum well, the equations derived above return to the form for
a standard three-layer structure, as expected. The effects of DBR can be easily included in
our theory via a transfer-matrix approach after determining the local field. The amplitudes
of the incoming field and the field after the DBR can be determined via the relation [20](

αi

βi

)
= MN

(
αa

βa

)
= Mn

(
αa

βa

)
(13)

whereM is the 2×2 transfer matrix, andN is the number of paired layers constructing the
DBR. One can easily find that

r = −βi
αi
= Mn(2, 2)Rp −Mn(2, 1)

Mn(1, 1)−Mn(1, 2)Rp
. (14)

It can be seen from equation (14) that without DBR in front of the cavity, i.e. withMn = 1,
we haveαi = αa andr = Rp, as expected.

Since the light is totally reflected at the interface b/c, the absorptionAp is determined
via

Ap = 1− |r|2 = 1−
∣∣∣∣Mn(2, 2)Rp −Mn(2, 1)

Mn(1, 1)−Mn(1, 2)Rp

∣∣∣∣2 . (15)

3. Numerical results and discussion

In this section we present detailed numerical calculations for the linear optical absorption
arising from intersubband transitions. The parameters used in the calculations are given
as follows: the widths of the chosen Al0.3Ga0.7As/GaAs quantum wells ared1 = 30 Å,
db = 30 Å and d2 = 40 Å, and the normalizing factorω21 = ε21/h̄. The coupled double
quantum wells are located symmetrically in the cavity for all of the cases. The dielectric
constants of layers b and c areεb = 13.1, εc = 1.0, and the length of the cavity is 0.5 µm.
The materials constructing the front DBR layers are GaAs and Al0.67Ga0.63As, and thus
the dielectric constants are 13.1 and 11.0, respectively. The angle of incidence is 60◦ and
h̄/τ = 3 meV.

Figure 2 shows the absorption as a function of normalized incoming frequency
for different paired DBR layers added to the basic cavity. The n-doping density is
0.7× 1012 cm−2. It appears from figure 2 that as only one pair of DBR layers is added
to the cavity the absorption spectrum shows only one peak, which is located at∼1.13ω21

due to the local-field corrections [14–16]. However, the absorption spectrum still shows an
asymmetric shape due to the cavity effects. With three paired DBR layers placed in front
of the cavity the amplitude of the absorption decreases, the peak is slightly red-shifted and
the spectrum becomes broadened. When five DBR layers are added to the cavity, the peak
at∼1.13ω21 keeps decreasing and being broadened, and the peak is blue-shifted. We begin
to see that a shoulder develops close toω21. When seven paired DBR layers are added
to the cavity, the peak above 1.1ω21 is blue-shifted and becomes narrower, and the peak
is also increased in magnitude; the shoulder becomes a distinct peak. When ten paired
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Figure 2. The absorption as a function of the normalized frequency for different paired DBR
layers added to the basic cavity.

DBR layers are added to the cavity, the two peaks at∼0.97ω21 and∼1.13ω21 become even
narrower, and both peaks are increased in magnitude; of the increases, that of the peak at
∼0.97ω21 is larger than that of the other peak. One may also notice that a shoulder develops
at∼1.2ω21 and a peak appears at∼0.87ω21. From the five curves presented in figure 2, we
can see that with more and more DBR layers added to the cavity the peak located somewhat
above 1.1ω21 first becomes decreased and broadened, then, together with additional peak(s)
appearing close toω21, the peak starts to become sharper and bigger; the peak above 1.1ω21

can be red-shifted or blue-shifted. Since this peak is due to the resonance ofγz, with the
change of the fineness of the cavity the resonance condition forγz is also modified. Due
to the high fineness of the cavity, the interaction between the light supported by the cavity
and the quantum wells is enhanced and as a result additional peaks appear atω . ω21.

Figure 3 shows the absorption as a function of the normalized frequency for different

Figure 3. The absorption as a function of the normalized frequency for different doping densities
(as indicated,×1012 cm−2). There are seven DBR layers placed in front of the cavity.
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Figure 4. The absorption as a function of the normalized frequency for different electric field
strengths as indicated (in Vµm−1). There are five DBR layers placed in front of the cavity.

doping densities (as indicated,×1012 cm−2). There are seven DBR layers placed in front of
the cavity. It can be seen from figure 3 that when the doping density is 0.4×1012 cm−2, the
peak aboveω21 is very broadened, while the peak due to the interaction between the cavity
and the quantum wells is quite clear; as the doping density increases to 0.7× 1012 cm−2,
the peak aboveω21 becomes distinct and its amplitude increases, while the peak belowω21

is reduced in magnitude and the splitting between the two peaks increases owing to the
blue-shift of the peak aboveω21; when the doping increases up to 1.0× 1012 cm−2 the
tendency becomes clearer. It is clear that as the doping density is changed, the resonance
condition forγz is also changed due to the change of the condition tensor. With increase of
the doping density, the shift and the increase of the peak aboveω21 have been observed in
the usual quantum-well systems [15]. The peak due to the strong interaction between the
cavity and the quantum wells remains at∼0.97ω21. However, the amplitude of this peak is
reduced with the increase of the doping density.

Finally we study the behaviour of the linear optical absorption of the coupled double
quantum wells under the influence of the applied electric field. Figure 4 shows the absorption
as a function of the normalized frequency for different electric field strengths as indicated (in
V µm−1). The n-doping density is 0.7×1012 cm−2, and there are five DBR layers placed in
front of the cavity. It appears from figure 4 that with the variation of the applied electric field
strength, the peak above 1.1ω21 moves in the range 1.1ω21 . ω . 1.25ω21. From numerical
calculations we know that, as the field strength is close to 5 Vµm−1, the wavefunctions
of the ground and excited states dwell evenly in both narrow and wide wells—that is, it is
in the resonant tunnelling stage [19] that the peak is located at∼1.25ω21; this also implies
that at this field strength the splitting of the two peaks reaches its maximum, since the peak
belowω21 remains at∼0.97ω21. Also at this field strength, the peak belowω21 reaches its
minimum in magnitude. With a further increase of the field strength the peak above 1.1ω21

begins to be red-shifted, and when the field strength is set to 9.0 Vµm−1 this peak moves
back to the position it had forF = 0. It is worth pointing out that, without inclusion of
the local-field effects, the peak on the high-frequency side will locate exactly atω21 for
different applied field strengths, which can be easily seen by settingγz =

∫
8(z)Eb,z(z) dz.

In conclusion, in this paper we have used the local-field theory to study the optical
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intersubband absorption of coupled double quantum wells embedded in an asymmetric
microcavity. Numerical results show that changing of the fineness of the microcavity,
the doping density and applied field strength can lead to significant modification of the
intersubband absorption of the wells in the cavity.

Appendix

In this part we give detailed definitions of some of the parameters used in the main part of
the paper.

The linear conductivity tensor entering equation (3) takes a diagonal form and the
relevant non-zero components of the conductivity tensor are given via [14]

σxx(z
′, z′′) = ie2

0

2πh̄2ω

(ε2− ε1)(εF − ε1)
2

[h̄(ω + i/τ)]2− (ε2− ε1)2
φ(z′)φ(z′′) (A.1)

σzz(z
′, z′′) = ie2

0

2πmω

(ε2− ε1)(εF − ε1)

[h̄(ω + i/τ)]2− (ε2− ε1)2
8(z′)8(z′′) (A.2)

and two abbreviations are introduced:

φ(z) = ψ1(z)ψ2(z) 8(z) = ψ1(z)
dψ2(z)

dz
− ψ2(z)

dψ1(z)

dz
. (A.3)

In the equations above,e0 is the electron charge,m denotes the effective mass andτ is
the relaxation time associated with intersubband transitions.ε2 andε1 are the ground- and
excited-state energies, andψ2(z) andψ1(z) are the ground- and excited-state wavefunctions,
respectively. The global charge-neutrality condition has been used in the determination of
the Fermi energy,εF .

In equation (5),T(z) andζ are given by

T(z) =
(
φ(z) 0

0 8(z)

)
(A.4)

ζ =
(
ζxx 0
0 ζzz

)
(A.5)

and the non-zero elements ofζ are given by

ζxx = µ0e
2
0

πh̄2

(ε2− ε1)(εF − ε1)
2

[h̄(ω + i/τ)]2− (ε2− ε1)2
(A.6)

ζzz = µ0e
2
0

2πm

(ε2− ε1)(εF − ε1)

[h̄(ω + i/τ)]2− (ε2− ε1)2
. (A.7)

In equation (12),rp is the reflection coefficient in the absence of the wells, which is
given by

rp = rab + rbce2iq(b)⊥ L

1+ rabrbce2iq(b)⊥ L
. (A.8)
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